
SQL Injection
Demo

Instructor: In this demonstration,
we'll show how to conduct a SQL
injection attack against a vulnerable
web application. The vast majority of
attacks are conducted against
applications, and where a data
breach has occurred, SQL injection
has been the number one attack
vector. Eight-five percent of all data
breach attacks are done through SQL
injection. For this demonstration,
we'll be using our BackTrack 5
machine as our attack box, and our
SROCNOC as our target system.

This is a very simple web application
that was written to demonstrate SQL
injection attacks. There are lots of
things wrong with how this application
was programmed, and we're going to
take advantage of a few of them.

Any part of a web application that
accepts data from a browser, client,
or user is a potential attack point.
For SQL injection attacks, you want
to look for points where data you
supply might be send to the backend
database for processing. Login
screens are perfect examples. Here,
we will log into the web application
with the username of "admin" and
password "admin". The username
and password given by a user is
typically interpreted, maybe filtered
for what are called magic characters,
the special SQL characters that make
injection possible, and pass along to
the database.

SQL injection is nothing more than a
set of characters that when passed to
a database results in some action
being taken or a query returning a
certain value. The goal of SQL

Page 1 of 4

injection is to find a vulnerable point
in a web application and then craft
an appropriate query that gives us
what we want. If we think about the
underlying SQL query being run when
we click the Login button, a
reasonable assumption would be that
the application takes our username
and password using it to form part of
a SQL query. If the query returns
true, then the username and
password match, and we get logged
into the application.

What would happen if we were able
to modify the query being run on the
backend database? Since we don't
have access to the application or
source code, we can't change the
source code directly, but we do have
access to a character string that gets
passed to the database. Actually, we
have two: the username and the
password. What if we modify the
username that we put in here to
include SQL language instead of just
a username? A quick way to check if
the username field is vulnerable to
SQL injection is to use this command
stream. When the application builds
the SQL query to check if the user
exists in the database, the query will
actually be modified, and since one
always equals one, we'll end up
getting logged into the application.

Simply logging into the application
might not be enough for us. What if
we wanted to do something else, like
modify data, or create our own user
account? We can use an automated
tool called sqlmap to help us map out
the underlying the database and give
us a structure so we can add, modify,
or delete data from the database.
We can accomplish this by opening a
command prompt and changing
directory to
/pentest/web/scanners/sqlmap, and
typing the following command.

Page 2 of 4

Sqlmap will look at the URL we
provided and test the backend
database to see what's possible.
We've chosen an arbitrary value for
the username and for the password.
These don't even have to exist in the
database.

Sqlmap found a potential injection
point with the username field. We'll
have it continue searching so it can
find the password field as well.

Sqlmap found another potential
injection point with the password
field. We'll use this one.

Sqlmap will now go and try to find all
the database names on the server.
You can see it has found four
database names. The one we're
interested in is SRS. Now we want to
find the table names in the database.
We'll use a slightly different
command for asking for the tables.
Use the Up arrow in the command
line to find the Python command you
previously used. Swap the --dbs with
-d srs --tables. It quickly tells us
there are two tables in the SRS
database, srsregs and srsusers.

Now let's get the structure of the
users table. Again, in the command
line, use the Up arrow to navigate to
the previously used Python
command. Navigate to the beginning
of the command and remove Python.
Also replace the -d srs --tables with -t
srs_users --columns. And just like
the table names, we now have the
fields in the table and their data
types. Armed with this information,
we can now go back to our injection
point and the username or password
fields and create our own user. We
will type ' or 1=1; insert into
srs_users (username, password)
values ('hackerbing', 'hackerbing');--.

Page 3 of 4

When we attempt to log in, we will
receive an invalid username or
password message. Do not worry
about this. Let's just try to log in.
Our username is hackerbing,
password is hackerbing. We have
now demonstrated how to
successfully attack a system that is
vulnerable to SQL injection.

If you're new to SQL databases,
these cheat sheets from
pentestmonkey may come in handy.
They provide the syntax for pulling
the structure and data of a database
without any prior knowledge of the
database.

Page 4 of 4

	SQL InjectionDemo

