

Use of Microsoft’s Platform as a Service

Demo

Instructor: In this demonstration

we are going to take advantage of

Microsoft's Platform as a Service

capability to install a simple

application, and configure a

supporting Web Application Firewall.

Along the way we will address some

other cloud security best practices in

Microsoft Azure.

Let's go ahead and create a new app

service. We have to select the Azure

subscription this will be tied to, and

identify the Resource Group it will

belong to. Since there are none

currently available, a new one will

need to be created.

We will enter an application name.

Note, this must be unique as the

Page 1 of 7

shared domain suffix will be

azurewebsites.net by default.

The runtime stack will be .NET Core

3.1 and we'll see where that comes in

to play a bit later.

The region our application will be

deployed in is set to Central US.

Within our app service plan it has

defaulted to a standard size

configuration. We can change that,

and different options are available to

support compute, memory, storage,

and other scaling requirements. We

are going to select the smallest free

tier possible for our first application.

When we proceed to configuration of

our application insights, we run into a

problem. Our subscription already

has an insights configuration for US

East, so if we want to leverage this,

we must deploy our application there,

or create a new one for central.

Let's reconfigure our app settings.

When we return to reset the region,

notice that it also reset my selection

for Sku and size. I'll need to change

that back to F1, the smallest, shared

infrastructure option available.

Now we can enable application

insights. We are not going to add

any tags. And now, review and

create.

Once deployment is complete, we

have a new dashboard available that

presents detailed information aout
our new app service. And we can

Page 2 of 7

open the URL that has been setup to see

our default web site. Also notice that

this has TLS enabled by default using

a Microsoft signed certificate. We

could choose to replace this with our

own certificate later on, but this is a

nicely integrated feature.

Microsoft does have a version of

Visual Studio for the Mac. The install

is quite painless, and I already have

ready to support Azure publishing.

We will also take advantage a some

freely available source code from

Microsoft to setup our first Azure

app.

Inside of visual studio we will create

a new web application project, no

authentication, and HelloWorld-Test

as the name.

Now we want to grab that source

code from its Git repository. Click Version

Control, Clone Repository. Enter our

Git URL, and click clone.

A quick look at the application

options shows us .Net Core 3.1 target

framework, which is why we

previously selected that when setting

up our app engine in Azure.

We are going to make a small code

change, just so we can verify this is

our code being deployed.

Let's do that now. Build, Publish to

Azure. I'm already logged in through

visual studio so my list of available

app services shows up. I will select

the only one I have available and

click publish.

Page 3 of 7

Once complete, and with a browser

refresh, we see our default Azure

page has been replace by our new

code.

Now we are going to setup some

developer permissions. In our Azure

Active Directory I already have a

dev2 user standing by. That user

does not have any assigned roles or

groups at this time.

We will jump over to our webapp and

verify that dev2 is not currently

assigned. Now, let's add dev2 to this

service. Add. Add role assignment.

You can see the descriptions of each

role pop-up as we mouse over each.

We are going to go with the

contributor role. We will select our

Azure AD account to pull our user list

from, and then click on dev2 to get

assignments setup. But, before I

click save, let's see if dev2 can

publish right now.

I need to go back to visual studio and

sign out, and then sign in with dev2.

We will change our web page a little,

just so we can easily confirm the

update after we publish. But when

we go to publish to Azure now, we

don't have any app services available

to us.

Returning to Azure we will save our

new role assignment, and confirm the

configuration in the Role Assignment

section.

Now we can return to visual studio,

refresh our list of available app

services, and here we go, there is

Page 4 of 7

now one available. We will select it,

and click publish. Upon completion

and refresh, we see that our code

update was pushed.

Next we are going to configure a

Web Application Firewall or WAF to

provide additional protection. The

WAF will evaluate the request

headers and other elements against a

set of policies to allow or deny the

request. If permitted, the request

will get forwarded to our actual web

application.

When creating our policy, we will

assign it to our global front door.

Assign it to the resource group that

our web app is also assigned to. And

give it a name.

We can set our policy to detect

threats or to block them. We are

going with prevention today. And we

will customize our response message

to verify it is ours, and not the

default from some other service. We

can take a peek at the default rules

which are setup to prevent SQL

injection, cross site scripting, and

other typical web attacks.

We are going to add our own custom

block rule. We'll give it a name,

ensure it is enabled, and then set

some conditions. There are several

things available to evaluate; Such as

request headers, cookies, the request

body, etc. We are going to do a

string match on a query string. We

will use blockme as the string we will

consider bad, and ensure that we

Page 5 of 7

have deny traffic as our action. We

could choose to allow or redirect to

another URL also. And our priority

number listed above would come in

to play if a request matches multiple

conditions.

We need to add a frontend host, but

unfortunately, we don't have one

available yet. We'll have to come

back and assign this in a minute. No

tags, review, and create.

Let's do a couple of quick tests. First

a simple SQL injection string that

should match one of the rules we

saw. Our page loads fine. A similar

test with our blockme text still works.

This is expected because we haven't

actually finished our WAF

configuration yet.

Navigating to our WAF policy, we still

do not have a frontend assigned. We

need to do that now. So, Front

Doors. Add. Select our subscription

and resource group. And next is a

configuration wizard.

We need a unique name for

azurefd.net. And ensure we enable

the WAF.

This front end needs to point to a

backend application that exists within

the resource group we previously

identified, so we need to select app

service and then our

webapp08162020. Next is the

backend pool configuration and we

will accept the defaults on this.

Page 6 of 7

Almost done, we need to add a

routing rule. This last step directs

requests that hit this front door to

the specific WAF backend pool we

just configured. Review and create.

If we revisit our WAF policy we see a

frontend host identified along with a

URL. To leverage the firewall, all

requests must hit this URL for

inspection, and upon success, they

will get forwarded to our app engine.

So, let's open that URL.

We will attempt our sample SQL

inject text on the URL. We know the

WAF blocked this request because of

our custom error message. One

more test using our blockme query

sting. And that too is blocked.

Perfect.

There is just one more thing to take

a quick look at. Let's go to settings

for our new application. Then

configuration, and platform settings.

Here we can see our stack definition

and other parameters. I want to

disable FTP state. We won't be using

FTP to deploy our application, and

therefore we should ensure this

unnecessary service has been

disabled.

We also see in here where we can

configure our default web

documents, set snapshot and backup

schedules, and even import your own

SSL or TLS certificates.

Page 7 of 7

